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Abstract--A numerical analysis is made to analyse the effect of uniform blowing or suction on the vortex 
mode of instability of a horizontal mixed convection boundary layer flow with a uniform free stream 
velocity in a saturated porous medium. The governing equations for the base flow are solved by using a 
suitable variable transformation and employing an implicit finite-difference Keller Box method. The 
stability analysis is based on the linear stability theory and the resulting eigenvalue problem is solved by 
the local similarity method. The results indicate that, for blowing, the Nusselt numbers are lower than 
those for an impermeable surface and the flow is more susceptible to the vortex instability, while the 

opposite trend is true for suction. 

1. INTRODUCTION 

The problems of vortex mode of instability in natural  
or mixed convection flow over a heated plate in a 
saturated porous medium have received considerable 
attention in past decades. This is primarily due to a 
large number  of  technical applications, such as fluid 
flow in a geothermal reservoir, separation processes 
in chemical industries, storage of radioactive nuclear 
waste materials, transpiration cooling, transport  pro- 
cesses in aquifers, etc. 

Hsu et al. [1] and Hsu and Cheng [2] analysed 
the vortex mode of instability for natural  convection 
boundary  layer flow adjacent to an impermeable 
surface, horizontal and inclined, in porous media. 
Jang and Chang [3] re-examined the same problem 
for an inclined plate, where both the streamwise and 
normal component~ of the buoyancy force are 
retained in the momentum equations. Jang and Chang 
[4] studied the vortex instability of horizontal natural  
convection in porous media resulting from combined 
heat and mass buoyancy effects. The effects of density 
extremum on the vortex instability of an inclined 
buoyant  layer in porous media saturated with cold 
water were examined by Jang and Chang [5, 6]. The 
non-Darcian effects on the vortex instability of a hori- 
zontal natural  convection flow in a high-porosity med- 
ium were investigated by Chang and Jang [7, 8]. 

For  mixed convection boundary  layer flow adjacent 

to an impermeable surface, Hsu and Cheng [9] ana- 
lysed the vortex instability for horizontal flow in a 
porous medium. Hsu and Cheng [10] applied a linear 
stability analysis to determine the condition of onset 
of  vortex instability for flow over an inclined surface. 
Jang and Lie [11] provided new vortex instability 
results for small angles of inclination from the hori- 
zontal (q~ ~< 25 °) and more accurate results than 
reported in a previous study [10] for larger angles 
of inclination ((k > 250) • Recently, the boundary  and 
inertia effects on vortex instability of a horizontal 
mixed convection flow have been examined by Lie and 
Jang [12]. 

All of the works mentioned above are conducted 
for flows over an impermeable surface. The free con- 
vections with blowing or suction over a vertical and a 
horizontal plate in a porous medium were studied by 
Cheng [13] and Minkowycz et al. [14], respectively. 
Lai and Kulacki [15, 16] investigated the effects of 
blowing or suction on mixed convection over hori- 
zontal and inclined surfaces in saturated porous 
media. However, the influence of blowing or suction 
on the vortex instability of free or mixed convection 
flow in a porous medium seems not  to have been 
investigated. This has motivated the present inves- 
tigation. It should be noted that the corresponding 
problems for a viscous fluid on a concave and a hori- 
zontal wall were examined by Kobayashi [17] and 
Jang and Lie [18] respectively. As might be expected, 
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NOMENCLATURE 

spanwise wave number 
inertia parameter 
dimensionless stream function 
dimensionless blowing or suction 
parameter, - 2Vw/Us 
dimensionless disturbance stream 
function 
Forchheimer number, 2c U~k I /2 /v 
acceleration due to gravity 
dimensionless disturbance velocity, 
ff(x, y)/(~pei(2 /x) 
complex number 
dimensionless wave number = 
ax/pem~/2 

permeability 
dimensionless mixed convection 
parameter, Rex/Pe 3/2 
Nusselt number 
pressure 
modified Peclet number, U~x~kl/2/o~ 
local Peclet number, Uo~x/a 
modified local Rayleigh 
number = [po~gflK( T w -  To~)x]/~v 
time 
temperature 
Darcy's velocity in x, y and z 

directions 
coordinate in streamwise direction 
coordinate normal to bounding 
surface 

z coordinate in spanwise direction. 

Greek symbols 
equivalent thermal diffusivity 

fl coefficient of thermal expansion 
0 dimensionless base state 

temperature = ( T -  To~)/(Tw- T~) 
19 dimensionless disturbance 

temperature = 7~(x, y)/(Tw- T~) 
# absolute fluid viscosity 
p fluid density 
a volumetric heat capacity ratio of the 

saturated porous medium to that of the 
fluid 

q pseudo-similarity variable = 
(y/x) Pe~/2 
stream function. 

v kinematic viscosity 

Superscripts 
* critical value 
' differentiation with respect to t/. 

Subscripts 
0 basic undisturbed quantities 
1 disturbed quantities 

condition at infinity 
w condition at wall. 

the results for a porous medium resemble those for a 
viscous fluid [18]. However, there are some differ- 
ences, arising from the preferred governing equations. 

2. MATHEMATICAL FORMULATION 

2.1. The main flow 
Consider a semi-infinite horizontal permeable 

surface, with uniform temperature (Tw) and surface 
mass flux Vw, aligned parallel to a uniform free stream 
velocity U~ and temperature To as shown in Fig. 1, 
where x represents the distance along the plate from 
its leading edge and y represents the distance normal 
to the surface. The surface mass flux is assumed to 
be constant with Vw > 0 for blowing and Vw < 0 for 
suction. The following conventional assumptions sim- 
plify the analysis. (1) The physical properties are con- 
sidered to be constant, except for the density term that 
is associated with the body force. (2) The convecting 
fluid and the porous matrix are in local ther- 

modynamic equilibrium. (3) The Boussinesq and 
boundary layer approximations are employed. 

With these assumptions, the governing equations 
for a non-Darcy porous medium, including the inertia 
and boundary effects, are given by 

~u &v ~ + ~ = 0  (1) 

pgfl ¢3_ I°~(T_T~o)dy #K u -  pc , , , 
# d2u 

0 
dx J~ x /~  lufu~ ~ dy~ 

(2) 

0T ~3T 
+V~yy = c~V2T (3) H~X 

with boundary conditions 

x = 0  T = T ~  

u =  U~ 
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U ~  = c o n s t a n t  

D. 

g 

T® 

v w = c o n s t a n t  T w = c o n s t a n t  

Fig. 1. Physical model. 

x 

x > 0  y = 0  T = T w  V = V w  

y-+oo T =  T~ 

u = U~ (4) 

where c is the inertia coefficient of the porous medium ; 
Kis the permeability of the saturated porous medium ; 

is the coefficient ,of thermal expansion ; and c~ rep- 
resents the equivalent thermal diffusivity. The other 
symbols are defined in the Nomenclature. 

On introducing the following transformation : 

r/(x,y) = Y-Pe'~/2 {(x) = Pe~/2 
X 

if(x, y) T -  T~ 
f({,  q) - 0({, q) - - -  (5) 

~pe~/2 Tw -- T~ 

where Pex = U~x/~, is the local Peclet number. Equa- 
tions (1)-(3) can be non-dimensionalized as follows : 

7 1 f f ' - - ( l + F r f ' ) f "  

+ M  Od.+  Jo (6) 

~ 0 - 0  ~ - i f O '  (7) 0 , ,  = 

with the prime denoting differentiation with respect 
to q. The corresponding boundary conditions are 

f (G0)  =fw f ' (¢ ,0)  = 0 0(4,0) = 1 

f ' ( ~ , m ) =  1 0 ( { , m ) = 0 .  (8) 

It is noted that M = RG/Pe 3/2 is the mixed convection 
parameter, which measures the importance of free to 
force convection. M = 0, corresponds to the case of 
purely force convection; while M ~ m corresponds 
to the case of purely free convection. Fr = cU~kUZ/v  

is the Forchheimer number expressing the relative 
importance of the inertia effect and Pek = U~k~/2/~ 

is the modified Peclet number; fw = -2Vw/U~ is the 
dimensionless blowing or suction parameters; fw is 
positive for suction (Vw < 0), negative for blowing 
(Vw > 0), and fw = 0 for the case of an impermeable 
surface [12]. It is noted that Darcy's law corresponds 
to the case ofPek = 0 and Fr = 0 [15]. 

It can be shown that the velocity components and 
the local Nusselt number can be expressed as 

u =  U~f" 

V = - ° ~ P G  [,~x ~ + 2 x J -  ~ x f ' )  

Nux/Pe~ ~2 = - 0'(~, 0). (9) 

2.2. The disturbance flow 
The standard method of linear stability theory is 

that in which the instantaneous values of the velocity, 
pressure and temperature are perturbed by small 
amplitude disturbances and the mean flow quantities 
are subtracted, with terms higher than first order in 
disturbance quantities being neglected. Then we get 
the following disturbance equations 

0u~ 0v~ 0wl 
t x  + ~ y  + ~-~ = o (lO) 

- -  C ( ~ P l  # + ~ p u o u ,  - ~- ~-V2ul (11) 
KUl ~/ K Ox 

P + ~ p u o v l  = --p~gflTt + V:vl 

(12) 

P ~Pl + ~V2wl (13) 

~T1 0T1 ~To 0To 
UO ~ x  +VO ~-y +U' ~ x  +vt ~-y =~V2TI 

(14) 
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where the subscripts 0 and 1 signify the mean flow 
and disturbance components respectively, and a is 
the ratio of volumetric heat capacity of the saturated 
porous medium to that of the fluid. 

Following the method of order of magnitude analy- 
sis described in detail in [1], the terms Ou~/ax and 
aZT1/ax 2 in equations (10) and (14) can be neglected. 
The omission of au~/ax in equation (10) implies the 
existence of a disturbance stream ¢1 such that 

a¢, a¢l 
Wl = ~yy vl -- az " (15) 

We assume the three-dimensional disturbances for 
neutral stability are of the form 

(¢,, ul, T1) = ((/(x,y), ~t(x,y), T(x,y)) exp [iaz] 

(16) 

where a is the spanwise periodic wave number. Sub- 
stituting equation (16) into equations (10)-(14) and 
eliminating p~ yields 

f .  a : ~ ' ~  c . 
~/latT-- 7-v-~/+ ~ l a p u o t 7  
^ \ ox oy/ x /K  

=~kia~y2--iaO--axay3 4-a ~ )  (17) 

K \ a y  2 / x /K  

+ ~-e (-- 2a 2 a21~ay 2 +a4~ + a4~']ay 4 ] (18) 

aT aT .aTo . - a T o  [a2T_a2 -\" ,) 
(19) 

Equations (17)-(19) are solved based on the local 
similarity approximations [1], wherein the dis- 
turbances are assumed to have weak dependence in 
the streamwise direction (a/ax << a/ay). Letting 

6(x,y) a(x,y) 
F(t/) G(q) - 

ie Pe~/2 ~ Pe~/2/x 

T(x,y) ax 
(9(¢, r/) = k - (20) 

(Tw -- T~:) pe~/2 

one gets the following system of equations for the 
local similarity approximation : 

½( p2,,] p2 e~ \ ,, ek ,,, 1 Pe~ 
= ~ 2 + F r ¢ 2 f ' + ~ l q r - - - ~  - F  - 2  ~ fir .... 

(21) 

Pe-~ F" "-- ( ~2 + Fr ~2 f" + ~ - k 2 )F" 

+@2+Fr¢2f '+ ~-f k2)k2F=Mk~3® (22) 

,, 1/ a A  (9 

1 - t lO G + k¢O'F (23) 

with the boundary conditions 

F(0) = F'(0) = G(0) = (9(0) = 0 

F(oo) = F'(oo) = G(oo) = (9(o0) --- 0. (24) 

Equations (21)-(23) along with their boundary con- 
ditions, equation (24), constitute an eighth-order sys- 
tem of linear ordinary differential equations for the 
disturbance amplitude distributions GOt), F(tl) and 
(90/). For fixed k, M, Fr, Pek and e, the solutions G, 
F and (9 are eigenfunctions for the eigenvalue 4. 

3. NUMERICAL METHOD OF SOLUTION 

In the stability calculations, the disturbance equa- 
tions are solved by separately integrating four linearly 
independent integrals. The full solution may be writ- 
ten as the sum of four linearly independent solutions 

G = GI +E2G2 +E3G3 +E4G4 

F = FI +EzF2 +E3F3 +E4F4 

(9 = (91 -I-E21~2 -I-E3(93 + E4(94. (25)  

The four independent integrals (Gi, Fi, ®3 with 
i = 1-4 may be chosen so that their asymptotic solu- 
tions are 

®l = exp(Flr/) Fi = Nl exp(Flr/) 
02 = 0 F2 = exp (F2r/) 
®3 = 0 F3 = exp (F3~) 
O4 = 0  F4 = 0  

G1 = N2 exp (Fjr/) 

G2 = N3 exp (F2r/) 

G3 = N4 exp (F3rl) 
G4 = exp (F3rl) (26) 

where 
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F2 = - k  

F3 = - ~/Pe~ + k2 

N l 
eMk43/pe~ 

Pe%kI~(42+P---e~-)rlN1F21-P--e~N1F~- I Pe~ " F ~ ~-r/lvl 

N 2 = 

N 3 = 

N 4 = 

- -  k F21- Pe~k 42+ Pe k 2 

e [( Pe~k2"~k -] 

An implicit finite-difference Keller Box method is 
used here to solve first the base flow system, equations 
(6) and (7), and the results are stored for a fixed 
step size, At/= 0.02, which is small enough to permit 
accurate linear interpolation between the mesh points. 
Equations (21)-(23) with boundary conditions, equa- 
tion (24), are then solved as follows. For specified k, 
4 is guessed. Using equations (26) as starting values, 
the four integrals are integrated separately from the 
outer edge of the boundary layer to the wall using a 
sixth-order Runge~Kutta variable step-size inte- 
grating routine incorporated with the Gram-Schmidt 
orthogonalization procedure [19] to maintain the lin- 
ear independence of the eigenfunctions. The required 
input of the base flow to the disturbance equations is 
calculated, as necessary, by linear interpolation of the 
stored base flow. From the values of the integrals 
at the wall, E2, E3 and E4 are determined using the 
boundary condition G(0) = F(0) = ®(0) = 0. The 
fourth boundary condition F'(0) = 0 is satisfied only 
for the appropriate value of the eigenvalue 4. A Taylor 
series expansion of the initial guess of 4 provides a 
correction scheme for the initial guess of 4. Iterations 
continue until the second boundary condition is 
sufficiently close to zero (<  10 6, typically). 

4. RESUt.TS AND DISCUSSIONS 

Numerical results for the velocity, temperature pro- 
files, Nusselt number, the critical Peclet number and 
wave numbers at the onset of vortex instability are 

presented for mixed convection parameter M = 0.1- 
2 with the dimensionless blowing or suction parameter 
fw ranging from - 1 to 1.0. In order for the boundary 
layer assumptions (v << u) to be valid in the present 
analysis, the values offw are limited in the range of 
- l t o  1. 

Figure 2 show the velocity and temperature profles 
across the boundary layer for selected values offw(- 1, 
-0 .5 ,  0, 0.5 and 1.0) and for M = 1. The velocity 
profiles are referred to the left and lower axes, while 
the temperature profiles are referred to the right and 

7 6 5 4 3 2 0 I 2.G o0 I [ I I I I 
1.8 ~=09  Pe S I n  - - f w = 0 b y L i e  . 

k - -  u 
h6 Fr = 0.1 and Jang [12] ~.~j 0.8 

1.2 D.6 

0.8 fw -- -1 ,  - 0 .5 ,  0 ,  0 . 5 ,  1 C).4 

0 ,  

0 1 2 3 4 5 6 7 ~0 
~q 

Fig. 2. Tangential velocity and temperature profiles across 
the boundary layer for selected values offw for M = 1. 
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Fig. 3. Alternation of Nu,./Pel~ :2 with ~ for various values 
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Fig. 5. Critical Peclet number as a function offw for various 
values of M. 

=0.9 - - f w  =ObyLie  
Pe, = 10 and Jang [12] __ , :o/ , .  
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~ _ 
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Fig. 4. Neutral stability curves for various values Of Jw for 
M = I .  

upper axes. It should be noted thatJw = 0 represents 
the flow over an impermeable surface [12]. The values 
offw < 0 correspond to blowing, while the values of  
fw > 0 correspond to suction. It is seen from Fig. 2 
that the blowing or suction markedly affects the vel- 
ocity and temperature fields. It is seen that surface 
blowing (fw < 0) tends to increase both the tangential 
velocity and temperature boundary layer thicknesses, 
while they are decreased for surface suction (fw > 0). 
Figure 3 shows the alternation ofNux /Pe  1/2 with ~ for 
various values of  blowing/suction parameter fw. One 
can see that blowing (fw < 0) decreases the heat trans- 
fer rate, while suction (fw > 0) increases it. For  
suction, the fluid at the ambient temperature is 
brought closer to the surface resulting in a decrease 
of  the thermal boundary layer thickness and an 
increase of  the heat transfer rate. On the other hand, 
for blowing, the ejected fluids forms a thick buffer 
layer against which heat must transfer by conduction 
resulting in a drop in the heat transfer rate. 

Figure 4 show the neutral stability curves, in terms 
of  Pex and dimensionless wave number k, for various 

1.2 

1.0 

0.8 

0.6 

0.4 
-1.0 

I I I 
-0.5 0 0.5 1,0 

Fig. 6. Critical wave number as a function offw for various 
values of M. 

values of  dimensionless blowing or suction parameter 
f w ( - 1 ,  - 0 . 5 ,  0, 0.5 and 10) and for M = 1. It is 
observed that, for suction (fw > 0), asfw increases (i.e. 
stronger suction), the neutral stability curves shift to 
higher Rayleigh number and higher wave number, 
indicating a stabilization of  the flow to the vortex 
instability, while for blowing (fw < 0), as [fwI increases 
(i.e. stronger blowing) the neutral stability curves shift 
to the lower Rayleigh number and lower wave 
number, indicating a destabilization of  the flow. 

The critical Peclet number Pex and the critical wave 
number k, which marks the onset of  longitudinal vor- 
tices, can be found from the minimum of the neutral 
stability curves. The critical Peclet number and wave 
number are plotted as a function of  dimensionless 
blowing and suction parameter fw in Figs. 5 and 6, 
respectively, for various values of  mixed convection 
parameter M. The results indicate that suction 
(fw > 0) tends to stabilize the flow, while blowing 
(fw < 0) tends to destabilize it. The reason that suction 
is more stable is due to the fact that the effect of  
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suction is to suck away the wa rm fluid on  the plate and  
suppress the occurrence of  vortices, and  consequent ly  
suct ion stabilizes the vortex mode  of  instability. I t  is 
appa ren t  f rom Fig. 6 tha t  the critical wave n u m b e r  
increases as the flow changes f rom strong blowing to 
s t rong suction (i.e. j~  increases). Finally,  a close look 
o f  Figs. 5 and  6 indicates tha t  the effects of  mixed 
convect ion pa ramete r  M on the critical Peclet n u m b e r  
and  critical wave n u m b e r  are more  p ronounced  than  
the effect of  dimensionless  suct ion or blowing par- 

ameter  fw. 

5. CONCLUSIONS 

The effects o f u n i t b r m  surface blowing or suct ion on  
the vortex instabil i ty of  a hor izonta l  mixed convect ion 
bounda ry  layer flow in a sa tura ted  porous  med ium 
have been examined by a l inear stability theory. The 
numerical  results demons t ra te  tha t  blowing (fw < 0) 
reduces the heat  t ransfer  rate and  destabilizes the flow 
as compared  with tile case of  an  impermeable  surface, 
while for suct ion (J~ > 0), the opposite t rend is true. 
It is also found tha t  the critical wave n u m b e r  increases 
as the flow changes f rom strong blowing to s t rong 
suction. 
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